Lecture 9

Proofs by Contraposition (contd.), Proof by Contradiction

Examples: Proof by Contraposition

Theorem: Suppose $x \in Z$. If $x^{2}-6 x+5$ is even, then x is odd.
Proof: We will prove the contrapositive of the theorem. That is,
Suppose $x \in Z$. If x is even, then $x^{2}-6 x+5$ is odd.
By the definition of an even integer,
If x is an even integer, then $x=2 k$, where k is some integer.
So, $x^{2}-6 x+5=(2 k)^{2}-6 .(2 k)+5$
$=4 k^{2}-12 k+5$
$=4 k^{2}-12 k+4+1$
$=2\left(2 k^{2}-6 k+2\right)+1$
$=2 k^{\prime}+1$, where k^{\prime} is the integer $2 k^{2}-6 k+2$.
Thus, $x^{2}-6 x+5$ is odd.

Examples: Proof by Contraposition

Theorem: Suppose $n \in \mathbb{Z}^{+}$. If $n \% 4$ is 2 or 3 , then n is not a perfect square.

$\neg p=n \% 4$ is neither 2 nor 3.
$=n \% 4$ is 0 or 1 .
$\neg q=n$ is a perfect square.
Theorem: Suppose $n \in \mathbb{Z}^{+}$. If n is a perfect square, then $n \% 4$ is 0 or 1 .

Examples: Proof by Contraposition

Theorem: Suppose $n \in \mathbb{Z}^{+}$. If $n \% 4$ is 2 or 3 , then n is not a perfect square.
Proof: We will prove the contrapositive of the theorem. That is,
Suppose $n \in \mathbb{Z}^{+}$. If n is a perfect square, then $n \% 4$ is 0 or 1 .
Since n is a perfect square, $n=k^{2}$, where k is some integer.
There are four cases to consider, based on the value of $k \% 4$.
Case 1: When $k \% 4=0$
If $k \% 4=0$, then $k=4 q$, for some integer q.
Therefore, $n=k^{2}=(4 q)^{2}=4\left(4 q^{2}\right)$. Hence, $n \% 4=0$.
Case 2: When $k \% 4=1$
If $k \% 4=1$, then $k=4 q+1$, for some integer q.
Therefore, $n=k^{2}=(4 q+1)^{2}=4\left(4 q^{2}+2 q\right)+1$. Hence, $n \% 4=1$.

Examples: Proof by Contraposition

Case 3: When $k \% 4=2$
If $k \% 4=2$, then $k=4 q+2$, for some integer q.
Therefore, $n=k^{2}=(4 q+2)^{2}=16 q^{2}+16 q+4=4 .\left(4 q^{2}+4 q+1\right)$.
Hence, $n \% 4=0$.
Case 4: When $k \% 4=3$
If $k \% 4=3$, then $k=4 q+3$, for some integer q.
Therefore, $n=k^{2}=(4 q+3)^{2}=16 q^{2}+24 q+9=4\left(4 q^{2}+6 q+2\right)+1$
Hence, $n \% 4=1$.

Proof of Biconditional Statements

Because,

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Proving both "if p, then q " and "if q, then p ", proves " p if and only if q ".

Example: Prove that "For an integer n, n is odd if and only if n^{2} is odd."
We can prove the above statement by proving the below statements:

1. For an integer n, if n is odd, then n^{2} is odd.
2. For an integer n, if n^{2} is odd, then n is odd.

Proof by Contradiction

Outline of Proof by Contradiction.

1. The proposition to be proved is p.
2. We show that $\neg p$ implies falsehood. That is, proposition $\neg p \rightarrow q$ is true, where q is false.

- $\neg p \rightarrow q$ is proven true by assuming $\neg p$ is true and then using it to prove q is also true.
- Typically, q is of the form $r \wedge \neg r$.

3. Since $\neg p \rightarrow q$, where q is false, can be true only when $\neg p$ is false, we can conclude that p is true.

Note: Typically, q or r are not known in the beginning of the proof. We assume $\neg p$ and start deducing statements until we deduce some proposition r and $\neg r$.

Examples: Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.
Proof: Let $p=\sqrt{2}$ is irrational. Then, $\neg p=\sqrt{2}$ is rational.
Suppose $\neg p$ is true, i.e., $\sqrt{2}$ is rational. Then,

$$
\begin{equation*}
\sqrt{2}=\frac{a}{b} \tag{1}
\end{equation*}
$$

where $b \neq 0$, and a and b have no common factors.
Square on both sides of (1),

$$
\begin{aligned}
2 & =\frac{a^{2}}{b^{2}} \\
2 b^{2} & =a^{2}
\end{aligned}
$$

By the definition of an even integer, it follows that a^{2} is even.

Examples: Proof by Contradiction

If a^{2} is an even integer, then a is also even. Thus $a=2 k$, for some integer k.
Replace a with $2 k$ in $2 b^{2}=a^{2}$. We get,

$$
\begin{aligned}
2 b^{2} & =4 k^{2} \\
b^{2} & =2 k^{2}
\end{aligned}
$$

By the definition of an even integer, it follows that b^{2} is even. Therefore, b is also even.
We have shown that both a and b are even.
Therefore, a and b have a common factor, i.e., 2 . But, we also deduced earlier that a and b have no common factor.

Because, $\neg p=\sqrt{2}$ is rational implies both " a and b have no common factor" and " a and b have a common factor", $\neg p$ must be false. Thus, p, i.e., $\sqrt{2}$ is irrational, must be true.

