Lecture 9

Proofs by Contraposition (contd.), Proof by Contradiction

Theorem: Suppose $x \in \mathbb{Z}$. If $x^2 - 6x + 5$ is even, then x is odd.

Proof: We will prove the contrapositive of the theorem. That is, Suppose $x \in Z$. If x is even, then $x^2 - 6x + 5$ is odd.

By the definition of an even integer,

If x is an even integer, then x = 2k, where k is some integer.

So,
$$x^2 - 6x + 5 = (2k)^2 - 6 \cdot (2k) + 5$$

$$= 4k^2 - 12k + 5$$

$$= 4k^2 - 12k + 4 + 1$$

$$= 2(2k^2 - 6k + 2) + 1$$

$$= 2k' + 1$$
, where k' is the integer $2k^2 - 6k + 2$.

Thus, $x^2 - 6x + 5$ is odd.

Theorem: Suppose $n \in \mathbb{Z}^+$. If n % 4 is 2 or 3, then n is not a perfect square.

p

q

Equivalent

statements.

 $\neg p = n\% 4$ is neither 2 nor 3.

= n % 4 is 0 or 1.

 $\neg q = n$ is a perfect square.

Theorem: Suppose $n \in \mathbb{Z}^+$. If n is a perfect square, then n % 4 is 0 or 1.

Theorem: Suppose $n \in \mathbb{Z}^+$. If n % 4 is 2 or 3, then n is not a perfect square.

Proof: We will prove the contrapositive of the theorem. That is,

Suppose $n \in \mathbb{Z}^+$. If n is a perfect square, then n % 4 is 0 or 1.

Since n is a perfect square, $n=k^2$, where k is some integer.

There are four cases to consider, based on the value of k%4.

Case 1: When k % 4 = 0

If k % 4 = 0, then k = 4q, for some integer q.

Therefore, $n = k^2 = (4q)^2 = 4(4q^2)$. Hence, n % 4 = 0.

Case 2: When k % 4 = 1

If k% 4 = 1, then k = 4q + 1, for some integer q.

Therefore, $n = k^2 = (4q + 1)^2 = 4(4q^2 + 2q) + 1$. Hence, n % 4 = 1.

Case 3: When k % 4 = 2

If k % 4 = 2, then k = 4q + 2, for some integer q. Therefore, $n = k^2 = (4q + 2)^2 = 16q^2 + 16q + 4 = 4.(4q^2 + 4q + 1)$.

Hence, n % 4 = 0.

Case 4: When k % 4 = 3

If k% 4 = 3, then k = 4q + 3, for some integer q.

Therefore, $n = k^2 = (4q + 3)^2 = 16q^2 + 24q + 9 = 4(4q^2 + 6q + 2) + 1$

Hence, n % 4 = 1.

Proof of Biconditional Statements

Because,

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

Proving both "if p, then q" and "if q, then p", proves "p if and only if q".

Example: Prove that "For an integer n, n is odd if and only if n^2 is odd."

We can prove the above statement by proving the below statements:

- 1. For an integer n, if n is odd, then n^2 is odd.
- 2. For an integer n, if n^2 is odd, then n is odd.

Proof by Contradiction

Outline of **Proof by Contradiction**.

- 1. The proposition to be proved is p.
- 2. We show that $\neg p$ implies falsehood. That is, proposition $\neg p \rightarrow q$ is true, where q is false.
 - $\neg p \rightarrow q$ is proven true by assuming $\neg p$ is true and then using it to prove q is also true.
 - Typically, q is of the form $r \land \neg r$.
- 3. Since $\neg p \rightarrow q$, where q is false, can be true only when $\neg p$ is false, we can conclude that p is true.

Note: Typically, q or r are not known in the beginning of the proof. We assume $\neg p$ and start deducing statements until we deduce some proposition r and $\neg r$.

Theorem: $\sqrt{2}$ is irrational.

Proof: Let $p = \sqrt{2}$ is irrational. Then, $\neg p = \sqrt{2}$ is rational.

Suppose $\neg p$ is true, i.e., $\sqrt{2}$ is rational. Then,

$$\sqrt{2} = \frac{a}{b} \tag{1}$$

where $b \neq 0$, and a and b have no common factors.

Square on both sides of (1),

$$2 = \frac{a^2}{b^2}$$

$$2b^2 = a^2$$

By the definition of an even integer, it follows that a^2 is even.

If a^2 is an even integer, then a is also even. Thus a=2k, for some integer k.

Replace a with 2k in $2b^2 = a^2$. We get,

$$2b^2 = 4k^2$$

$$b^2 = 2k^2$$

By the definition of an even integer, it follows that b^2 is even. Therefore, b is also even.

We have shown that both a and b are even.

Therefore, \underline{a} and \underline{b} have a common factor, i.e., $\underline{2}$. But, we also deduced earlier that \underline{a} and \underline{b} have no common factor.

Because, $\neg p = \sqrt{2}$ is rational implies both "a and b have no common factor" and "a and b have a common factor", $\neg p$ must be false. Thus, p, i.e., $\sqrt{2}$ is irrational, must be true.